
Teachers’ Experiences of using PRIMM to Teach Programming in School
(Author Pre-Print)

SUE SENTANCE∗, King’s College London

JANE WAITE, Queen Mary University of London

MARIA KALLIA, King’s College London

PRIMM is an approach to teaching programming at K-12 that facilitates the structure of lessons in a purposeful way. PRIMM stands for
Predict-Run-Investigate-Modify-Make, and draws on recent research in programming education. In particular the PRIMM approach
recognises that starting with existing code and being able to explain what it does gives novice programmers the confidence to write
their own programs. Using the PRIMM approach, teachers can devise scaffolded and targeted tasks for students which helps engender
understanding, particularly for those who may have previously struggled to understand programming concepts. In this techniques
paper, we consider what PRIMM is, and the experiences that teachers have had of using the structure in the classroom. PRIMM
materials have been trialled in schools in a study involving around 500 students aged 11-14. From interviews with nine participating
teachers we have found that teachers particularly value the collaborative approach taken in PRIMM, the structure given to lessons,
and the way that resources can be differentiated. We propose that PRIMM is an approach that could be adopted in all phases of
programming education as well as in teacher training.

CCS Concepts: • Social and professional topics → K-12 education; Computer science education;

Additional Key Words and Phrases: K-12 education, programming education, K-12 teachers

ACM Reference Format:
Sue Sentance, Jane Waite, and Maria Kallia. 2019. Teachers’ Experiences of using PRIMM to Teach Programming in School (Author
Pre-Print). 1, 1 (January 2019), 13 pages. https://doi.org/10.1145/3287324.3287477

1 INTRODUCTION

The reformation of school computing in England has been a welcome development given that it is essential that we
prepare all young people with the digital skills they need to fully participate in society. The introduction of new
computer science concepts and skills into the curriculum, particularly in the area of computer programming, has been
challenging for students and teachers, firstly because models for pedagogy are either not fully formed or shared with
teachers, and secondly, because computer programming can be difficult to learn [24]. It is thus recognised that more
research needs to be conducted with a focus on appropriate pedagogy [31].

Computing teachers benefit from access to proven teaching strategies and pedagogies relating to programming.
Much research has been carried out in this area, mostly in higher education settings, but only recently in schools,
∗The first author now works at the Raspberry Pi Foundation. Paper published by ACM at https://doi.org/10.1145/3287324.3287477

Authors’ addresses: Sue Sentance, King’s College London, London, UK, sue@raspberrypi.org; Jane Waite, Queen Mary University of London, London, UK,
j.l.waite@qmul.ac.uk; Maria Kallia, King’s College London, London, UK, maria.kallia@kcl.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/3287324.3287477


and this has not been widely translated into usable structures for teachers. Consequently, computing teachers are
being called to deliver a challenging subject with insufficient knowledge of effective teaching strategies and on how to
develop and enhance vital competencies to accomplish this task. To address these issues, we have developed and are
evaluating a new pedagogical model for teaching and learning programming (PRIMM) [26]. PRIMM can be used to
structure lessons and sequences of lessons with the following activities:

• Predict what code will do
• Run the code to test predictions
• Investigate the structure of code
• Modify the code to add functionality
• Make a new program using the same/modified structures.

PRIMM stands forPredict,Run, Investigate,Modify andMake. Using PRIMM, classroom activities can be designed
which involve predicting the output of code, code comprehension and gradually making new programs. It is a method
of teaching programming that counters the known problem of novices trying to write programs before they are able to
read them [15]. It incorporates activities that scaffold learning for students and provides a structure for lessons.

In this techniques paper, we describe the rationale for this approach, exemplify it, and describe teachers’ experiences.
In a study of the PRIMM methodology we interviewed nine experienced K-12 Computing teachers about their teaching
of programming to students aged 11-14 using PRIMM. From our analysis we identified that teachers particularly value
predicting what code does, the potential for differentiation to a wide range of abilities, and the structure provided by
PRIMM.

2 TEACHING PROGRAMMING: INSTRUCTIONAL APPROACHES

Much research associated with the teaching of programming has focused on pedagogy and instructional approaches to
teaching. From the 1980s we see an emphasis on learners constructing knowledge as they explore [22]; applying ideas
from Papert’s constructionism we see instructional approaches based around open-ended activities, through which
students can develop a personal understanding of newly introduced concepts or devices.

More recent research has highlighted the need for guided instruction to ensure that learners circumnavigate a
carefully constructed progression to develop a complete mental model [8, 9, 17, 20, 25]. Grover et al. suggest that to
foster deep learning a combination of guided discovery and instruction rather than pure discovery and ’tinkering’
would be more successful[9]. This sentiment is echoed by a number of studies with emerging evidence that some of
the more difficult concepts such as initialisation, variables and loops need to be explicitly taught [11, 12, 20]. Other
studies raise the need for learners’ cognitive load to be managed by more closely controlling learning opportunities
and learning experiences [1, 32, 33]. This research has implications for pedagogy in school, suggesting that targeted
teaching is needed for difficult concepts within a controlled progression of learning experiences [35].

Research in the teaching of programming has also included a focus on the levels of abstraction involved in under-
standing how to write programs. Cutts et al. reviewed university students use of vocabulary when solving multiple
choice questions [6] and suggested a teaching model of student understanding of programs called the Abstraction
Transition Taxonomy (ATT) which included three levels of language in programming: English, CS Speak and Code.
The recommendation from this research was to support learners to be able to transition across all levels. Another
framework, the Levels of Abstraction (LOA) framework, has been developed for introductory programming courses
Manuscript submitted to ACM



[2, 23, 28]. Four levels are described: execution; program; algorithm and problem [2]. The focus of the LOA framework is
on learners knowing what level they are working at and being able to transition between the levels.

Another focus has been on reading and tracing code. Work by Lister and colleagues over many years has highlighted
the importance of reading code and being able to trace what it does before writing new code[15, 16]. Comparing tracing
skills to code writing, they demonstrated that novices require a 50% tracing code accuracy before they can independently
write code with confidence [16, 34]. Learning to program is sequential and cumulative, and tracing requires students
to draw on accumulated knowledge to conceive a big picture. Work by Teague and Lister in this area suggests that
novice learners should be focused on very small tasks with single elements [30]. Another study concluded that as well
as inferring meaning from code from its structure, the first step should be to make inferences about the execution of
the program [5].

Studies related to code comprehension have also highlighted the importance of reading code to addressmisconceptions
of algorithm efficiency [7] and the use of worked examples to understand how variables change over time [29]. Gujberova
and Kalas recommended a sequence of carefully graded learning activities for primary students to improve programming
and computational thinking, including activities where learners read and interpreted each line of code, as well as a
stage for reading the entire program and predicting the outcome [10]. Another approach is subgoal modelling, where
meaningful labels are added to worked examples to visually group steps into subgoals - thereby highlighting the
structure of code. Two higher education studies [18, 21] used this strategy with exemplar text, worked examples and
problems. Both reports concluded that those students given subgoals performed significantly better than those who had
no subgoals or who added their own subgoals.

Another approach used in the teaching of programming is Use-modify-create (UMC). UMC is a teaching framework
for supporting progression in learning to program [14]. Learners move along a continuum from where they first use
programs made by someone else to finally create their own programs. Between these points they modify work made by
someone else so that the modified material becomes ’theirs’.

3 THE PRIMM APPROACH

The PRIMM approach builds on some of the research cited above. In particular it draws primarily on three areas of
research:

• Tracing and read-before-you-write[15, 16]. PRIMM draws on tracing and reading code as an important
principle for teaching programming [15]. The predict phase of PRIMM encourages students to practice reading
code and working out what it will do when executed.

• Use-Modify-Create [14]. PRIMM is influenced by the work on Use-Modify-Create (UMC) [14]. PRIMM’s predict,
run and investigate phases map to the use stage. Modify is the same across both frameworks. PRIMM’s make

phase is equivalent to create. PRIMM has partly built on UMC to gradually transfer ownership of the program to
the student. It supports the student’s confidence as they are not burdened by the prospect of failure until they
understand how the program works.

• Levels of Abstraction [6, 23]. Thirdly, PRIMM draws on work relating to abstraction [6, 23], in that the different
activities focus on different levels of abstraction. The Predict and Run phases focuses very much on the execution
of code, whereas the Investigate stage is about the program, or Cutts et al’s Code level. When students reach the
Make stage they have developed skills to focus on the ‘problem’ that needs to be solved.

Manuscript submitted to ACM



Fig. 1. A predict activity from one of the first lessons

Fig. 2. A predict activity from a more advanced lesson

4 A PRIMM LESSON

In this section, we briefly describe a PRIMM lesson or sequence of lessons, and the materials that exemplify this. The
intention is that teachers can develop their own PRIMM-like materials at an appropriate level for their students.

4.1 Predict and Run

At the beginning of a PRIMM lesson, students are given a short program on the board, or on paper, to look at in pairs.
The task is for them to write down the output of the program. Our examples use Python; two examples are shown in
Figures 1 and 2.

The teacher discusses the students’ answers with the class, and students then download code and run to check their
prediction. It is important that they do not copy the code as this is a completely different process. Access to a shared
area where starter programs are stored is important, and multiple predict activities can be used.

4.2 Investigate

In this phase of the lesson or sequence of lessons, students are asked code comprehension questions about the same
program or snippet of code. These questions pick out certain aspects of the program to develop understanding.
Developing good questions in this section requires a good understanding of programming and student misconceptions,
and the Block Model [25] can help to structure questions. For example, students may be asked a question about the
execution of the whole program, which requires an understanding of the underlying algorithm and program execution.
In the pizza example shown in Figure 2, the student may be asked what happens if the user does not add any toppings.
In addition questions can be asked which enable the students to discuss individual snippets of codes, such as that shown
in Figure 3. Discussion of the question should ideally take place in pairs or groups to enable students to develop the
vocabulary they need to talk about the program [6].
Manuscript submitted to ACM



Fig. 3. Sample question in the investigate phase

4.3 Modify and Make

In this phase of the lesson the learners are able to build on the existing program to modify and create new programs.
Carefully structured activities allow progression from simple changes to more substantial functional changes to the
program. Having an existing program in place gives the student confidence and something to build on. Sometimes the
modify task is to remove obvious glitches with the program. For example, following the Pizza example in Figure 2, a
modify task may to be to improve the program so that the output does not end with “and”. Subsequently, in the make

phase, the students will be asked to create a new program from a problem description, drawing on what they have
learned about loops and string manipulation from the previous program [6].

5 THE STUDY

As part of our research into the effectiveness of PRIMM, we applied design-based research methodology [4] to evaluate
and test the materials implementing the PRIMM approach. The goal of design-based research (DBR) is to “use the close

study of learning as it unfolds within a naturalistic context that contains theoretically inspired innovations, usually that

have passed through multiple iterations, to then develop new theories, artifacts, and practices that can be generalized to

other schools and classrooms.” [p.151][3]. DBR takes materials that have been developed through a particular theoretical
perspective and implements them in a naturalistic setting, iterating with the results of the materials in context. The
PRIMM materials are on their third iteration: firstly in a small study in a CPD setting [26], secondly used in a pilot
study with six teachers (Section 5.1), and the third iteration developed for the main study (Section 5.2). We used DBR to
consider both the structure of PRIMM as a teaching aid and the actual materials produced to exemplify PRIMM.

5.1 The pilot study

We designed and implemented a short pilot study to evaluate the effectiveness of PRIMM and understand it better. The
pilot study involved 6 teachers and approximately 80 students over 4-7 lessons, followed by individual interviews with
the teachers to consider their views of PRIMM and the materials. Interviews were recorded, transcribed, coded and
analysed. Teachers were enthusiastic about the PRIMM structure; our analysis of the interviews enabled us to further
develop the materials and to devise appropriate research instruments for the subsequent main study. For the pilot we
developed PRIMM-style worksheets for teachers to use with the intention of teachers developing them further and
becoming co-creators of PRIMM materials. We concluded that we needed to provide more comprehensive materials and
that teachers had limited confidence and time to develop their own resources in the PRIMM style.

5.2 The main study

For the main study we built on the pilot study in refining both the study materials and the analysis process. 14 teachers
were recruited, of whom 13 completed the trial and taught just less than 500 students using PRIMM for a period of three
to four months at the beginning of 2018. As a separate part of the study we used a quasi-experimental approach to

Manuscript submitted to ACM



investigate the impact of PRIMM on students’ performance [27], with an experimental group of 493 students performing
significantly better (p<.05) than a comparison group of 180 students in a post-test. In this paper, we focus on the
qualitative analysis, and the teachers’ experiences of PRIMM.

5.3 Participants

Teachers were recruited to the study via a number of channels, being selected on the basis of having students undertaking
an appropriate programming module within the timeframe of our study. Teachers attended a one-day training session
on the PRIMM approach and materials, which included the rationale behind DBR; teachers were invited to adapt, edit
and upload edited materials as they wished during the study. Teachers completed evaluations of the PRIMM lessons
that they taught, and interviews were arranged at the end of the trial with PRIMM materials. All ethical procedures
were adhered to. Information about the teachers is shown in Table 1.

Table 1. Summary of teacher and lesson characteristics

ID Teacher Grade Class No. No. No.
gender gender classes topics lessons

in study covered \topic
A Female 8th Girls 2 10 1
B Male 8th Boys 3 7 2
C Male 7th Mixed 2 8 2
D Female 6th Mixed 1 5 2-3
E Male 8th Mixed 2 10 2-3
F Female 7&8th Mixed 4 4 2
G Male 7th Girls 3 7 1
H Male 7th Mixed 6 7-9 1-2
I Male 8th Girls 2 8 1

5.4 Data collection: interviews

Semi-structured interviews were designed and conducted. After the pilot study (see Section 5.1) we reviewed the
interview questions for their contribution and usefulness and adapted them for the follow up study interview. In the
pilot study teachers were asked questions on general information about sessions with PRIMM and questions on PRIMM
experiences. The general questions were retained as they were useful to verify subject material covered; the experience
questions were expanded and grouped over three sections, resulting in four sections of questions for the main study:

• Section A General information about PRIMM sessions
• Section B Impact of PRIMM on students’ programming skills
• Section C Impact of PRIMM on teachers’ confidence
• Section D Use of PRIMM resources and the future

In total nine interviews were held with teachers from the 13 participating schools: these 9 were representative of the
sample of 13 (see Table 1). All interviews and focus groups were completed in the spring of 2018.

5.5 Data analysis

All interviews were conducted online, audio recorded and transcribed. A thematic qualitative data analysis (QDA)
approach was used to analyse the transcribed interviews and outcomes of tasks based on the methodology detailed by
Manuscript submitted to ACM



Table 2. Summary of codes

Overarching theme % segments
coded to this theme

A Practical details of implementation 9%
B Skills needed to program 4%
C. Stages of PRIMM 18%
D. Impact and use of PRIMM 23%
E. Differentiation and assessment 24%
F. Adaptation and future use 12%
G. Teachers’ feelings and emotions 11%

[13]. NVivo was used to support the process of coding text segments. Two of the authors worked on the coding of the
interviews.

In the pilot study we had first generated high level categories deductively from the research questions [13]. We had
also created sub-categories at this stage, based on knowledge of the field [19]. However, in the main study we started
by coding inductively from the interviews [19]. The rationale for this decision was to investigate whether there were
any significant differences in the emergent themes. The overall objective at this point was to create main themes which
would lead to a structure for reporting which would not be pre-determined by any initial constraints.

One author coded two of the interviews adding and amending categories and sub-categories inductively. After this
first pass of coding, we reviewed and revised the resultant categories to confirm they matched the data coded. Two
interviews provided approximately 1/5th of the overall transcripts in line with recommendations from [13] of 10 to 20%
for the first pass. Following this, all interviews were coded. Emergent patterns were recognized and new codes created
to hierarchically group codes. This process was repeated across the categories creating, merging and splitting codes
inductively [13, 19]. Once the more elaborate category system had been created, we checked that all data adhered to
the new coding structure and recoded as necessary [13]. A second researcher then coded three of the nine interviews
(33% of the text) a second time, with a Cohen’s Kappa reliability score of 0.75, which is considered as good agreement
between researchers.

6 RESULTS: TEACHERS’ EXPERIENCES

Through an iterative coding process seven key themes emerged from the data, as shown in Table 2, which shows the
themes and the % of coded segments for each theme. In total there were 1603 coded segments. Within the 6 themes,
categories were divided and further sub-divided to capture teachers’ contributions. In total there were 87 separate
sub-categories of themes. The 20 most commonly occurring of these 101 sub-categories is shown in Table 3.

From the 20 most common sub-categories and from our own theming exercise, we can see that teachers were
commenting largely on the structure and use of PRIMM, differentiation for different groups of students, and also their
own response to teaching in this way as teachers.

6.1 The structure and use of PRIMM

Teachers commented on a range of aspects of PRIMM that supported their teaching. Several teachers liked the way the
lessons were divided up into different activities and maintained interest of students of different abilities:

Manuscript submitted to ACM



Table 3. Most common sub-categories

No Sub-category No.
segments

1 Use and adaptation of PRIMM 147
2 Use for lower ability children 91
3 Predict aspect of PRIMM 78
4 Teacher emotions 70
5 Progress made by pupils 63
6 Modify aspect of PRIMM 59
7 Investigate aspect of PRIMM 58
8 Use for higher ability children 50
9 PRIMM being fun 46
10 Future use of PRIMM 42
11 Make aspect of PRIMM 35
12 Routine nature of PRIMM 34
13 Differentiation by group 32
14 Assessment 32
15 Run aspect of PRIMM 31
16 Repeating or interwoven concepts 30
17 Differentation by task 30
18 Flow of control and tracing 27
19 Differentiation by teacher guidance 25
20 Pupil/pupil communication 23

“...it’s chunking it up . . . and each lesson having a new challenge that builds on the previous one so it keeps the

interest of the ones that have raced ahead in the previous lesson.” (Teacher A)

One teacher commented that the predict and run part of the lesson promoted student engagement:

“I think the Predict bit drew them into the lesson from the start and then they were focused and that’s what

made them want to get involved.” (Teacher I)

Generally, asking students to predict what code would do without writing any was a new strategy for teachers.
Teacher C commented that he felt it set much higher expectations of his students. Several other teachers referred to the
collaborative nature of PRIMM:

“ I think the starter activity, where they actually have a clear activity, that was very good because it got them

to work with each other, help them help each other, really. And then, moving on, [we had] the code to be given

to the students to actually work with.” (Teacher H)

Teachers also commented on the independence and thinking skills generated by predicting what the code would do:

“With the starters, quite often I used a whiteboard where they actually had to write down what they thought

the program was going to do, what values they thought the program was going to create. Because they were

having to work out and write down what the program was doing, they were having to actually think about

for themselves, rather than me telling them what the program was doing.” (Teacher C)

Teachers could see the value of asking questions to demonstrate code comprehension, although the investigate part
of the process was felt to be a difficult part of the lesson for some students. In part this was caused by the pitch of the
Manuscript submitted to ACM



materials (written by the research team) being too high, and including some challenging questions. However alongside
these concerns teachers acknowledged that they helped students gain an understanding of what was going on in the
program:

“ They were spotting how things happened or the significance of particular bits of the code and realising that

essentially that the task was easier than they might previously have thought.” (Teacher I)

Teacher I linked enjoyment of the modify stage and independence as he said:

“The less able ones [students] enjoyed it (modify) because they got what they were doing when they were at

that stage. They were more sure of themselves than they have been in previous Python lessons where they’ve

relied on my telling them. This was them doing it themselves . . . the difference was tangible.” (Teacher I)

Eight of the nine teachers mentioned how clear the PRIMM process was, how easy it was to follow the PRIMM
structure or the routine repeatable nature of PRIMM:

“By the third lesson they were familiar with the structure and they were happy to go with it. They knew what

was coming next, if you like, without necessarily knowing what the content was going to be, they knew what

was coming up next.” (Teacher I)

Some of the content provided in the PRIMM materials was felt to be too advanced for students at some schools, and
teachers felt they were pushing students through it. For example, Teacher D pointed out that he felt pressurized to get
learners to complete work:

“In one sense, it was very well structured because it meant that the high-performance students never run out

of work. In none of the lessons did I have students who completed every single thing. But it also meant that I

was sort of pushing on a lot.” (Teacher D)

The PRIMM modify stage was linked to learner confidence:

“. . . previously, when they’re writing their own programs, we have so much trouble with syntax errors and

half the lesson is just them sorting out syntax. So actually being able to modify it, they can think a little bit

more about what their code is doing rather than whether they’ve got a colon in the right place or whatever.

And then I think, moving on, once they get to making their own, they’ve got that little bit more confidence

that they’ve got a starting point to move on from” (Teacher A)

Teachers reported valuing and making time for the make aspect, despite being short of time:

“One of the reasons I didn’t get through ten activities is that the geography quiz was a really interesting make

project for them, yet most of them barely started their first question within the time available in one hour

across that lesson. I actually sacrificed the next lesson . . . it was a nice lesson to have as an extension without

introducing new concepts. We actually gave up another hour to making and peer reviewing the geography

quiz” (Teacher A)

6.2 Accessibility to a range of learners

One of the motivations behind PRIMM was that mandatory computing needs to be accessible to students with a wide
range of abilities, and those who may not have any innate interest in the subject. For example, Teacher D mentioned
that if students were not interested at all in programming, they could get into the content of the lesson much more
quickly “because they didn’t have to go through the process of typing it out themselves”.

Manuscript submitted to ACM



Three of the teachers described how they adapted some of the resources in the investigate stage, for example
making missing word activities. Some teachers described how their lower-ability learners did not get on to the final
make activities but that they had still achieved some of the learning outcomes:

“I found that the resources for each lesson had enough stretch for those that got it straight away and wanted

to go ahead, but also there was enough so that those that didn’t get it. They could carry on modifying, not

necessarily getting onto the make part . . . and they didn’t have that sense of frustration that they weren’t

doing anything.” (Teacher D)

Teacher D also saw starting with an existing program an advantageous way to make progress:

“It’s like a writer, isn’t it? You write an essay. If you start with a blank bit of paper, that scares some people. I

think the same can be true of a blank IDLE screen. So I think having a structure to hinge what they’re doing

on and not starting blank and the idea of tinkering is actually a good one.” (Teacher D)

Many of the lower-ability students lack confidence in programming but teachers felt that the PRIMM structure
enabled students to gradually build up confidence through the repetitive nature of the exercises, and be more comfortable
about making mistakes:

“At first, they weren’t confident by themselves to predict, and so I’d ask them to talk in pairs, for example,

as I think they were scared of getting it wrong . . . But as we went on and it became a routine that we did it,

and I had to build up the fact that they probably will fail as resilience . . . as a normal way of working. Once

they got to that point, they realised if they got it wrong, it didn’t actually matter, because it actually gave us

more to talk about and about why they thought it was wrong, and mistakes were completely acceptable and a

normal part of computer science.” (Teacher D)

6.3 Teachers‘ personal experience

Teachers talked a lot about how they experienced teaching with PRIMM personally. Several teachers discussed gaining
more confidence or insight into their own teaching methods.

“I felt that the structure, it’s something that I could hand over to someone that wasn’t such a confident coder

and they could go with it as well. ” (Teacher A)

Other teachers mentioned that using PRIMM made them more confident in their own students ability to learn new
concepts:

“I think that’s one of the things that I’d take away from PRIMM. It’s something that had changed my practice

and it made me I suppose more confident in kids’ ability to grasp functions or user-defined functions and

procedures. I’d say that was one of the few things in which I’d changed in terms of confidence.” (Teacher B)

Another teacher explained how they had more idea of students’ progress during the lesson, which made them more
effective:

“I found I could get round the room much more quickly, and I was seeing everyone’s screen or I was being

shown things. Things were being explained to me, instead of me asking for explanations from them.” (Teacher
I)

One of the most confident and experienced teachers in the study, who found keeping to the PRIMM structure
through the whole trial quite constraining, talked about the PRIMM approach as something he would use amongst
Manuscript submitted to ACM



other approaches, and repeated several times that he thought of PRIMM as a ‘philosophy’ rather than a ‘methodology’.
From this we infer that the structure was restrictive to him, but that the inherent ideas implicit were useful:

“I think the structure of PRIMM every lesson is a bit constraining. But I think as a philosophy, it’s great.

And I hope that the post-test against the control group shows that PRIMM is successful because it seems to

make sense. It seems to me that, as a philosophy, it would be great. As a methodology, it’s quite constricting.”

(Teacher B)

Teachers also talked about adapting the resources for future use, which implies a confidence to develop their teaching
further. Finally, teachers had comments on improvements to the materials, or how they might adapt the approach for
their particular students. Overall teachers were positive: “It really does work! ” (Teacher I)

6.4 Summary

Our study to date indicates that teachers value the structure provided by PRIMM. Many comments related to the Predict
phase particularly. This aligns with the work around the importance of reading and tracing code [15, 30, 34] as well as
the importance of understanding transition between different levels of a program [2, 6, 23, 28]. Teachers like the idea of
students modifying existing code, supported by the UMC approach [14], although in some cases the materials were
too weighty for the teachers to reach those sections in the time available. In terms of the materials we developed to
exemplify PRIMM, our research indicates that while the structure of the lessons suited the lower ability students in the
class, the quantity of content in the materials meant teachers could not complete all the activities planned. This does
not necessarily reflect on the PRIMM structure but indicates that both the structure and content of PRIMM lessons are
equally important.

Some teachers in our study were very willing to adapt materials and create new ones for students, for topics that
we had not yet covered, in particular. Other teachers were less confident to do this and felt constrained by being in a
research study. We reflected that, although we had built up good relationships with teachers in the study, in future
studies we would ensure that materials were co-constructed and owned more definitively by teachers.

7 CONCLUSION

In this paper we have described the structure of the PRIMM approach and the materials we developed to exemplify it.
Through interviews with teachers we have gained an understanding of the extent to which PRIMM is useful in school.

From teacher feedback, we can conclude that teachers find the approach useful and indicate that it helps students to
gain a better understanding of programming, as well as structuring productive lessons. We have shown that teachers
particularly value the collaborative approach taken in PRIMM, and the structure given to the lessons. Teachers also
could see the potential for differentiation to a wide range of abilities, and the focus on subject-specific vocabulary that
PRIMM engenders.

Although there has been much research around programming pedagogy, with a range of strategies suggested, our
experience to date suggests that this approach offers teachers a clear and easy-to-follow structure for lessons that other
approaches have not provided. For this reason, in our future work we plan to revisit the methodology used to ensure
that teachers feel able to engage more with the materials design and take an enhanced participatory role in the research.
We are collecting PRIMM-style resources that teachers have developed to use in their classrooms to use as exemplars
for a wider body of teachers. We anticipate that this approach may be of use to other researchers of school-based
computing education.

Manuscript submitted to ACM



REFERENCES
[1] Giora Alexandron, Michal Armoni, Michal Gordon, and David Harel. 2014. Scenario-based Programming: Reducing the Cognitive Load, Fostering

Abstract Thinking. In Companion Proceedings of the 36th International Conference on Software Engineering (ICSE Companion 2014). ACM, New York,
NY, USA, 311–320. https://doi.org/10.1145/2591062.2591167 00023.

[2] Michal Armoni. 2013. On Teaching Abstraction in Computer Science to Novices. Journal of Computers in Mathematics and Science Teaching 32, 3
(2013), 265–284.

[3] Sasha Barab. 2014. Design-based research: A methodological toolkit for engineering change. In The Cambridge Handbook of the Learning Sciences,
Second Edition. Cambridge University Press.

[4] Sasha Barab and Kurt Squire. 2004. Design-based research: Putting a stake in the ground. The journal of the learning sciences 13, 1 (2004), 1–14.
[5] Teresa Busjahn and Carsten Schulte. 2013. The Use of Code Reading in Teaching Programming. In Proceedings of the 13th Koli Calling International

Conference on Computing Education Research (Koli Calling ’13). ACM, New York, NY, USA, 3–11.
[6] Quintin Cutts, Sarah Esper, Marlena Fecho, Stephen R. Foster, and Beth Simon. 2012. The Abstraction Transition Taxonomy: Developing Desired

Learning Outcomes Through the Lens of Situated Cognition. In Proceedings of the Ninth Annual International Conference on International Computing
Education Research (ICER ’12). ACM, New York, NY, USA, 63–70.

[7] Judith Gal-Ezer and Ela Zur. 2004. The efficiency of algorithmsâĂŤmisconceptions. Computers & Education 42, 3 (April 2004), 215–226. https:
//doi.org/10.1016/j.compedu.2003.07.004

[8] Varvara Garneli, Michail N. Giannakos, and Konstantinos Chorianopoulos. 2015. Computing education in K-12 schools: A review of the literature.
In Global Engineering Education Conference (EDUCON), 2015 IEEE. IEEE, 543–551. 00017.

[9] Shuchi Grover, Roy Pea, and Stephen Cooper. 2015. Designing for deeper learning in a blended computer science course for middle school students.
Computer Science Education 25, 2 (April 2015), 199–237. https://doi.org/10.1080/08993408.2015.1033142

[10] Monika Gujberova and Ivan Kalas. 2013. Designing Productive Gradations of Tasks in Primary Programming Education. In Proceedings of the 8th
Workshop in Primary and Secondary Computing Education (WiPSE ’13). ACM, New York, NY, USA, 108–117. https://doi.org/10.1145/2532748.2532750
00012.

[11] Peter Hubwieser, Michal Armoni, Michail N. Giannakos, and Roland T. Mittermeir. 2014. Perspectives and Visions of Computer Science Education
in Primary and Secondary (K-12) Schools. Trans. Comput. Educ. 14, 2 (June 2014), 7:1–7:9. 00041.

[12] Paul A. Kirschner, John Sweller, and Richard E. Clark. 2006. Why Minimal Guidance During Instruction Does Not Work: An Analysis of the
Failure of Constructivist, Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching. Educational Psychologist 41, 2 (June 2006), 75–86.
https://doi.org/10.1207/s15326985ep4102_1 05793.

[13] Udo Kuckartz. 2014. Qualitative text analysis: A guide to methods, practice and using software. Sage.
[14] Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce Malyn-Smith, and Linda Werner. 2011. Computational thinking

for youth in practice. ACM Inroads 2, 1 (2011), 32.
[15] Raymond Lister, Elizabeth S Adams, Sue Fitzgerald, William Fone, John Hamer, Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate

Sanders, Otto Seppälä, et al. 2004. A multi-national study of reading and tracing skills in novice programmers. In ACM SIGCSE Bulletin, Vol. 36.
ACM, 119–150.

[16] Raymond Lister, Colin Fidge, and Donna Teague. 2009. Further Evidence of a Relationship Between Explaining, Tracing and Writing Skills in
Introductory Programming. In Proceedings of the 14th Annual ACM SIGCSE Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’09). ACM, New York, NY, USA, 161–165.

[17] Sze Yee Lye and Joyce Hwee Ling Koh. 2014. Review on teaching and learning of computational thinking through programming: What is next for
K-12? Computers in Human Behavior 41 (2014), 51–61. 00303.

[18] Lauren E. Margulieux and Richard Catrambone. 2016. Improving problem solving with subgoal labels in expository text and worked examples.
Learning and Instruction 42 (2016), 58–71. 00015.

[19] P Mayring. 2000. Forum: Qualitative Social Research Sozialforschung, 2. History of Content Analysis. In Forum: Qualitative Social Research.
Sozialforschung, Vol. 1.

[20] Orni Meerbaum-Salant, Michal Armoni, and Mordechai (Moti) Ben-Ari. 2013. Learning computer science concepts with Scratch. Computer Science
Education 23, 3 (Sept. 2013), 239–264. https://doi.org/10.1080/08993408.2013.832022

[21] Briana B. Morrison, Lauren E. Margulieux, Barbara Ericson, and Mark Guzdial. 2016. Subgoals Help Students Solve Parsons Problems. In
Proceedings of the 47th ACM Technical Symposium on Computing Science Education (SIGCSE ’16). ACM, New York, NY, USA, 42–47. https:
//doi.org/10.1145/2839509.2844617 00025.

[22] Seymour Papert. 1980. Mindstorms: children, computers and powerful ideas. Vol. Harvester studies in cognitive science. Harvester, Brighton.
[23] Jacob Perrenet, Jan Friso Groote, and Eric Kaasenbrood. 2005. Exploring students’ understanding of the concept of algorithm: levels of abstraction.

ACM SIGCSE Bulletin 37, 3 (2005), 64–68.
[24] Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and Teaching Programming: A Review and Discussion. Computer Science

Education 13, 2 (2003), 137–172.
[25] Carsten Schulte. 2008. Block Model: An Educational Model of Program Comprehension As a Tool for a Scholarly Approach to Teaching. In

Proceedings of the Fourth International Workshop on Computing Education Research (ICER ’08). ACM, New York, NY, USA, 149–160.

Manuscript submitted to ACM

https://doi.org/10.1145/2591062.2591167
https://doi.org/10.1016/j.compedu.2003.07.004
https://doi.org/10.1016/j.compedu.2003.07.004
https://doi.org/10.1080/08993408.2015.1033142
https://doi.org/10.1145/2532748.2532750
https://doi.org/10.1207/s15326985ep4102_1
https://doi.org/10.1080/08993408.2013.832022
https://doi.org/10.1145/2839509.2844617
https://doi.org/10.1145/2839509.2844617


[26] Sue Sentance and Jane Waite. 2017. PRIMM: Exploring pedagogical approaches for teaching text-based programming in school. In Proceedings of the
12th Workshop in Primary and Secondary Computing Education. ACM. https://doi.org/10.475/123_4

[27] Sue Sentance, Jane Waite, and Maria Kallia. [n. d.]. Teaching computer programming with PRIMM: a sociocultural perspective. Paper in review. ([n.
d.]).

[28] David Statter and Michal Armoni. 2016. Teaching Abstract Thinking in Introduction to Computer Science for 7th Graders. In Proceedings of the 11th
Workshop in Primary and Secondary Computing Education (WiPSCE ’16). ACM, New York, NY, USA, 80–83. https://doi.org/10.1145/2978249.2978261
00010.

[29] Leigh Ann Sudol-DeLyser, Mark Stehlik, and Sharon Carver. 2012. Code comprehension problems as learning events. In Proceedings of the 17th ACM
annual conference on Innovation and technology in computer science education. ACM, 81–86. http://dl.acm.org/citation.cfm?id=2325319

[30] Donna Teague and Raymond Lister. 2014. Programming: Reading, Writing and Reversing. In Proceedings of the 2014 Conference on Innovation and
Technology in Computer Science Education (ITiCSE ’14). ACM, New York, NY, USA, 285–290.

[31] The Royal Society. 2017. After the Reboot: Computing Education in UK Schools. Policy Report.
[32] Chia-Yin Tsai, Ya-Fei Yang, and Chih-Kai Chang. 2015. Cognitive Load Comparison of Traditional and Distributed Pair Programming on Visual

Programming Language. In Educational Innovation through Technology (EITT), 2015 International Conference of. IEEE, 143–146. 00001.
[33] Jeroen J. G. van MerriÃńnboer and John Sweller. 2005. Cognitive Load Theory and Complex Learning: Recent Developments and Future Directions.

Educational Psychology Review 17, 2 (June 2005), 147–177. https://doi.org/10.1007/s10648-005-3951-0 00000.
[34] Anne Venables, Grace Tan, and Raymond Lister. 2009. A Closer Look at Tracing, Explaining and Code Writing Skills in the Novice Programmer. In

Proceedings of the Fifth International Workshop on Computing Education Research Workshop (ICER ’09). ACM, New York, NY, USA, 117–128.
[35] JaneWaite. 2017. Pedagogy in teaching Computer Science in schools: A Literature Review. https://royalsociety.org/ /media/policy/projects/computing-

education/literature-review-pedagogy-in-teaching.pdf The Royal Society.

Manuscript submitted to ACM

https://doi.org/10.475/123_4
https://doi.org/10.1145/2978249.2978261
http://dl.acm.org/citation.cfm?id=2325319
https://doi.org/10.1007/s10648-005-3951-0

	Abstract
	1 Introduction
	2 Teaching programming: instructional approaches
	3 The PRIMM approach
	4 A PRIMM lesson
	4.1 Predict and Run
	4.2 Investigate
	4.3 Modify and Make

	5 The Study
	5.1 The pilot study
	5.2 The main study
	5.3 Participants
	5.4 Data collection: interviews
	5.5 Data analysis

	6 Results: Teachers' experiences
	6.1 The structure and use of PRIMM
	6.2 Accessibility to a range of learners
	6.3 Teachers` personal experience
	6.4 Summary

	7 Conclusion
	References

